Sox9 mediates Notch1-induced mesenchymal features in lung adenocarcinoma

نویسندگان

  • Kathleen M. Capaccione
  • Xuehui Hong
  • Katherine M. Morgan
  • Wenyu Liu
  • Michael J. Bishop
  • LianXin Liu
  • Elke Markert
  • Malik Deen
  • Christine Minerowicz
  • Joseph R. Bertino
  • Thaddeus Allen
  • Sharon R. Pine
چکیده

Sox9 has gained increasing importance both functionally and as a prognostic factor in cancer. We demonstrate a functional role for Sox9 in inducing a mesenchymal phenotype in lung ADC. We show that Sox9 mRNA and protein are overexpressed in lung ADC, particularly those with KRAS mutations. Sox9 expression correlated with the Notch target gene Hes1, and numerous other Notch pathway components. We observed that Sox9 is a potent inducer of lung cancer cell motility and invasion, and a negative regulator of E-cadherin, a key protein that is lost during epithelial-mesenchymal transition (EMT). Moreover, we show that Notch1 signaling directly regulates Sox9 expression through a SOX9 promoter binding site, independently of the TGF-β pathway, and that Sox9 participates in Notch-1 induced cell motility, cell invasion, and loss of E-cadherin expression. Together, the results identify a new functional role for a Notch1-Sox9 signaling axis in lung ADC that may explain the correlation of Sox9 with tumor progression, higher tumor grade, and poor lung cancer survival. In addition to Notch and TGF-β, Sox9 also acts downstream of NF-κB, BMP, EGFR, and Wnt/β-catenin signaling. Thus, Sox9 could potentially act as a hub to mediate cross-talk among key oncogenic pathways in lung ADC. Targeting Sox9 expression or transcriptional activity could potentially reduce resistance to targeted therapy for lung ADC caused by pathway redundancy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cell of origin and subtype of K-Ras-induced lung tumors are modified by Notch and Sox2.

Cell type-specific conditional activation of oncogenic K-Ras is a powerful tool for investigating the cell of origin of adenocarcinomas in the mouse lung. Our previous studies showed that K-Ras activation with a CC10(Scgb1a1)-CreER driver leads to adenocarcinoma in a subset of alveolar type II cells and hyperplasia in the bronchioalveolar duct region. However, no tumors develop in the bronchiol...

متن کامل

Molecular and Cellular Pathobiology Loss of TGF-b Adaptor b2SP Activates Notch Signaling and SOX9 Expression in Esophageal Adenocarcinoma

TGF-b and Notch signaling pathways play important roles in regulating self-renewal of stem cells and gastrointestinal carcinogenesis. Loss of TGF-b signaling components activates Notch signaling in esophageal adenocarcinoma, but the basis for this effect has been unclear. Here we report that loss of TGF-b adapter b2SP (SPNB2) activates Notch signaling and its target SOX9 in primary fibroblasts ...

متن کامل

MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway

Cisplatin (DDP)-based chemotherapy is a standard strategy for lung cancer, while chemoresistance remains a major therapeutic challenge. Recent evidence highlights the crucial regulatory roles of long non-coding RNAs (lncRNA) in tumor biology. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has important roles in regulating the proliferation, invasion and migration of lung cancer...

متن کامل

Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53.

The Notch pathway has been implicated in a number of malignancies with different roles that are cell- and tissue-type dependent. Notch1 is a putative oncogene in non-small cell lung cancer (NSCLC) and activation of the pathway represents a negative prognostic factor. To establish the role of Notch1 in lung adenocarcinoma, we directly assessed its requirement in Kras-induced tumorigenesis in viv...

متن کامل

Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model

Objective(s): This study aimed to determine the collagen type II (COL2) and SOX9 expression in interleukin growth factor (IGF-1)-induced Wharton’s Jelly mesenchymal stem cells (WJMSCs) and the level of chondrogenic markers in co-culture IGF1-WJMSCs and IL1β-CHON002 as osteoarthritis (OA) cells model. Materials and Methods: WJMSCs were induced with IGF1 (75, 150, and 300 ng/ml) to enhance their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014